廠牌: Immunochemistry 產地: 美國
MitoPT TMRM Assay
貨號:9105
售價: 12310元
Size: 500 Tests
MitoPT TMRM Assay 使用螢光染料 TMRM 檢測線粒體膜去極化。當累積在帶負電荷的極化線粒體中時,TMRM 會發出橙色螢光。當凋亡或代謝應激細胞中的線粒體膜電位崩潰時,TMRM 試劑分散在細胞質中,螢光水平急劇下降。使用流式細胞儀、螢光盤式分析儀或螢光顯微鏡分析您的結果。
Background
Loss of mitochondrial membrane potential is indicative of apoptosis. ICT’s MitoPT TMRM Assay utilizes the potentiometric fluorescent dye TMRM to detect mitochondrial membrane permeability and membrane depolarization. The TMRM dye has a delocalized positive charge dispersed throughout its molecular structure. In addition, its lipophilic solubility enables it to be readily membrane permeant and penetrate living cells. The TMRM dye enters the negatively charge mitochondria where it accumulates and fluoresces orange upon excitation. When the mitochondrial membrane potential collapses in apoptotic cells, MitoPT TMRM becomes distributed throughout the cytosol. Detection of the loss of orange-red fluorescence in TMRM stained cells is a reliable method for assessing apoptosis induction or oxidative stress-induced mitochondrial depolarization in experimental cell populations.
Reagent Name
TMRM
Target
Mitochondrial depolarization
Excitation / Emission
48 nm / 573 nm
Method of Analysis
Flow cytometry, Fluorescence microscope, fluorescence plate reader
Sample Type
Cell culture
Storage
-20°C
Country of Origin
United States
Protocols
Prepare samples.
Create controls with CCCP.
Dilute 10X Assay Buffer 1:10 with diH2O.
Reconstitute MitoPT TMRM with DMSO.
Dilute MitoPT TMRM with 1X Assay Buffer.
Add MitoPT TMRM to each sample.
Incubate 15-30 minutes.
Wash cells: add 1X Assay Buffer and spin cells.
Remove supernatant and resuspend cells for analysis.
Analyze with a fluorescence microscope, fluorescence plate reader, or flow cytometer. MitoPT TMRM excites at 548 nm and emits at 573 nm (orange).
Kit Contents
MitoPT TMRM Reagent, 500 Tests, #6256 10X Assay Buffer, 2 x 125 mL, #6259 CCCP, 50 mM, 600 µL, #6258 Kit Manual
Citations (5)
Khodayari, N;Wang, RL;Oshins, R;Lu, Y;Millett, M;Aranyos, AM;Mostofizadeh, S;Scindia, Y;Flagg, TO;Brantly, M. The Mechanism of Mitochondrial Injury in Alpha-1 Antitrypsin Deficiency Mediated Liver Disease. International journal of molecular sciences. 2021 December 9; doi: 10.3390/ijms222413255. Abstract Hoffmann, L;Waclawczyk, MS;Tang, S;Hanschmann, EM;Gellert, M;Rust, MB;Culmsee, C. Cofilin1 oxidation links oxidative distress to mitochondrial demise and neuronal cell death. Cell death & disease. 2021 October 16; doi: 10.1038/s41419-021-04242-1. Full Article Raynor JL, Liu C, Dhungana Y, Guy C, Chapman NM, Shi H, Neale G, Sesaki H, Chi H. Hippo/Mst signaling coordinates cellular quiescence with terminal maturation in iNKT cell development and fate decisions. J Exp Med. 2020 Jun 1;217(6):e20191157. doi: 10.1084/jem.20191157. Abstract Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, Wang Y, Wang YD, Qian C, Xu B, Kc A, Saravia J, Huang H, Yu J, Doench JG, Geiger TL, Chi H. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019 Dec;576(7787):471-476. doi: 10.1038/s41586-019-1821-z. Epub 2019 Dec 11. Abstract Takahashi J, Nagasawa S, Ikemoto MJ, Sato C, Sato M, Iwahashi H. Verification of 5-Aminolevurinic Radiodynamic Therapy Using a Murine Melanoma Brain Metastasis Model. Int J Mol Sci. 2019 Oct 17;20(20). pii: E5155. doi: 10.3390/ijms20205155. Full Text