廠牌: Immunochemistry 產地: 美國
Hoechst 33342 Fluorescent Nucleic Acid Stain
貨號:639
售價: 3918元
Size: 1 mL
Hoechst 33342是一種常用的細胞穿透性核染料,當它與雙鏈DNA結合時會發出藍色螢光。此染料常被用來區分凋亡細胞中凝聚的瓷樣細胞核,也被用於細胞週期研究。
這種染料可以穿透細胞膜進入細胞核內,與雙股螺旋DNA分子結合後,會產生強烈的藍色螢光發射。由於這種螢光強度與DNA含量成正比,因此Hoechst 33342被廣泛用於觀察細胞凋亡時細胞核的形態變化,以及分析細胞週期中DNA含量的變化。
它具有以下特點:
可以穿透活細胞膜,染色細胞核內DNA
發射藍色螢光,與其他綠色或紅色螢光蛋白質染料相容
螢光強度與細胞內DNA含量成正比
常用於偵測細胞凋亡、細胞週期分析等研究
總的來說,Hoechst 33342是一種極為實用的核酸染料,可應用於許多細胞生物學和分子生物學研究領域。
Background Hoechst 33342 is a popular cell-permeant, blue fluorescent nuclear stain. It is used to visualize the nuclei of living or fixed cells and tissues and is often used to distinguish condensed, pyknotic nuclei in apoptotic cells. Hoechst 33342 emits blue fluorescence when bound to double stranded DNA. It is slightly more membrane permeant than the Hoechst 33258 analog. Hoechst 33342 may be used to identify healthy or apoptotic nuclear morphology and for cell cycle studies.
Excitation / Emission 350 nm / 480 nm
Method of Analysis Flow cytometry, Fluorescence microscope
Storage 2-8°C
PH 5.0 + 0.5
Supplied At 200 µg/mL
Country of Origin United States
Protocols
Add Hoechst 33342 to the cell sample media at 0.5% v/v. For example, add 1.5 µL Hoechst to 300 µL of cells. 2. Incubate 10-20 minutes at room temperature.
Visualize with a fluorescence microscope by using a UV excitation and blue emission filter. The blue Hoechst stain fluoresces at 461 nm.
Alternatively, cells may be analyzed with a flow cytometer using a UV excitation source.
When bound to dsDNA, the maximum absorption is 350 nm and the maximum emission is 461.
Citations(31)
Product Specific References
PMID | Publication |
David, L, et al. 2024. NINJ1 mediates plasma membrane rupture by cutting and releasing membrane disks. Cell, 2224-2235.e16. | |
Lučiūnaitė, A, et al. 2024. Structural properties of immune complexes formed by viral antigens and specific antibodies shape the inflammatory response of macrophages. Cell & bioscience, 53. | |
Cosson, C, et al. 2024. Functional diversity of NLRP3 gain-of-function mutants associated with CAPS autoinflammation. The Journal of experimental medicine. | |
Hermosilla, V.E., et al. 2024. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell death & disease, 223. | |
Libberecht,K, et al. 2024. The Influence of Lysosomal Stress on Dental Pulp Stem Cell-Derived Schwann Cells. Biomolecules, 405. | |
Xie, Y, et al. 2024. GSDMD induces hepatocyte pyroptosis to trigger alcoholic hepatitis through modulating mitochondrial dysfunction. Cell division, 10. | |
Bianchi, E., et al. 2024. No evidence for a direct extracellular interaction between human Fc receptor-like 3 (MAIA) and the sperm ligand IZUMO1. Science advances, eadk6352. | |
Ivanusic, D., et al. 2024. tANCHOR-cell-based assay for monitoring of SARS-CoV-2 neutralizing antibodies rapidly adaptive to various receptor-binding domains. iScience, 109123. | |
Bertrand, B.P., et al. 2024. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infection and immunity, e0047423. | |
Bernauer, H., et al. 2024. tANCHOR cell-based ELISA approach as a surrogate for antigen-coated plates to monitor specific IgG directed to the SARS-CoV-2 receptor binding domain. Biology Methods and Protocols. | |
Killinger, M., et al. 2023. Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures. Journal of biological engineering, 77. | |
Bernauer, H., et al. 2023. tANCHOR fast and cost-effective cell-based immunization approach with focus on the receptor-binding domain of SARS-CoV-2. Biology methods & protocols, bpad030. | |
Heo, H., et al. 2023. TRIM22 facilitates autophagosome-lysosome fusion by mediating the association of GABARAPs and PLEKHM1. Autophagy. | |
Luscombe, V.B., et al. 2023. Kinetic insights into agonist-dependent signalling bias at the pro-inflammatory G-protein coupled receptor GPR84. European journal of pharmacology, 175960. | |
Ivanusic, D., et al. 2023. The large extracellular loop is important for recruiting CD63 to exosomes. microPublication biology. | |
Ho, A., et al. 2023. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 115435. | |
Schleinitz, A., et al. 2023. Consecutive functions of small GTPases guide HOPS-mediated tethering of late endosomes and lysosomes. Cell reports, 111969. | |
Sato, R., et al. 2022. Extracellular Vesicles Derived From Murine Cementoblasts Possess the Potential to Increase Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis. Frontiers in Physiology. | |
Lučiūnaitė, A., et al. 2022. Activation of NLRP3 Inflammasome by Virus-Like Particles of Human Polyomaviruses in Macrophages. Frontiers in immunology, 831815. | |
De Mazière, A., et al. 2022. An optimized protocol for immuno-electron microscopy of endogenous LC3. Autophagy, 44945. | |
Duarte, C., et al. 2022. Crosstalk between dihydroceramides produced by Porphyromonas gingivalis and host lysosomal cathepsin B in the promotion of osteoclastogenesis. Journal of cellular and molecular medicine. | |
Ophélie, G., et al. 2022. Cellular and molecular mechanisms of NiONPs toxicity on eel hepatocytes HEPA-E1: An illustration of the impact of Ni release from mining activity in New Caledonia. Chemosphere, 135158. | |
Kiriya, M., et al. 2022. Thyroglobulin regulates the expression and localization of the novel iodide transporter solute carrier family 26 member 7 (SLC26A7) in thyrocytes. Endocrine journal. | |
Chinn, H.K., et al. 2022. Hypoxia-inducible lentiviral gene expression in engineered human macrophages. Journal for immunotherapy of cancer. | |
Lu, S.L., et al. 2022. VEGF-Mediated Augmentation of Autophagic and Lysosomal Activity in Endothelial Cells Defends against Intracellular Streptococcus pyogenes. mBio, e0123322. | |
Xia, M., et al. 2022. BCL10 Mutations Define Distinct Dependencies Guiding Precision Therapy for DLBCL. Cancer discovery, 1922-1941. | |
Buscetta, M., et al. 2022. Cigarette smoke promotes inflammasome-independent activation of caspase-1 and -4 leading to gasdermin D cleavage in human macrophages. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, e22525. | |
Schroeder-Castagno, M., et al. 2022. Impaired response of blood neutrophils to cell-death stimulus differentiates AQP4-IgG-seropositive NMOSD from MOGAD. Journal of neuroinflammation, 239. | |
Wu, Z., et al. 2022. Double-Edged Sword Effect of Pyroptosis: The Role of Caspase-1/-4/-5/-11 in Different Levels of Apical Periodontitis. Biomolecules. | |
Konishi, H., et al. 2022. Osimertinib-tolerant lung cancer cells are susceptible to ferroptosis. Biochemical and biophysical research communications, 116-122. |